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ADSORPTION OF CESIUM ON INSULATORS
by

Jules D. Levine
RCA Laboratories
Princeton, N. J.

SUMMARY

Starting from fundamental quantum mechanical concepts, it has been possible to theoret-
ically derive wave functions, donor ionization energies, tunneling energies, conductivity relation-
ships, and equations of state, all in excellent agreement with the extensive experimental data
taken to date.

The ground state wave function of a cesium atom on a dielectric surface is theoretically
determined to be one lobe of a 2p hydrogenic wave function penetrating deep into the dielectric, and
general rules for selecting surface wave functions of all excited states and arbitrary surface
asymmetry have been derived. Cesium-cesium interactions are explicitly calculated using Kopineck’s
resonance integral between neighboring wave functions. Conductivity proceeds via cesium-cesium
electron tunneling and the conductivity relationship is derived in terms of Kopineck’s integral and
the surface phonon transitions which supply the conductivity loss mechanism. Phonon energies are
exp11c1tly calculated from the vibrational motion of surface atoms. The conduct1v1ty varies as the
cesium coverage squared, to a first approximation. An equation of state is derived showing the
linear dependence of coverage and arrival rate for the low coverage system of interest. The con-
ductivity is then predicted to be proportional to the cesium pressure squared, and this prediction has
been accurately verified experimentally.

By comparing other aspects of theory and experimental data, the heat and entropy change
of adsorption have been unambiguously calculated. For all clean alumina and glass substrates
¢, =085eV and 5.5 < As/k < 6.2. The large As/k values indicate that there is long-range order
either caused by dipole-dipole repulsions of surface cesium atoms or by the extended p or d wave
functions characteristic of high dielectric materials; a similar long-range order has been observed
in LEED studies. For surfaces probably contaminated with hydrogen, conductivity increases above
the nonhydrogenated case; the hydrogen probably forms conductivity bridges between nearby cesium
atoms. The heat of adsorption is unchanged from ¢, = 0.85 eV, showing that the contaminant affects
the conductivity but not the binding energy of cesium. The Arrhenius form of experimental data is con-
venient for calculating cesium conductivity in various thermionic energy converters and related test
apparatus. Sophisticated means have been developed for analyzing the Arrhenius coefficients with
and without contaminants. This represents an important tool in understanding the complex system
of two adsorbates present on one substrate.



ADSORPTION OF CESIUM ON INSULATORS
by

Jules D. Levine

A. INTRODUCTION

Emitter and collector surfaces in thermionic energy converters are complex because of
adsorbed cesium, adsorbed additive gases, and adsorbed residual gases. At present, there exists
no experimental or theoretical study capable of fully interpreting these complexities. The fre-
quently reported experimental studies of work function changes with various cesium and additive
pressures do not reveal the lateral interatomic forces between the cesium and the additive gas,
Present theoretical analyses of interadsorbate reactions ate not based on solutions of Schrodinger’s
equation, and criteria for obtaining very low work function surfaces are imperfectly understood,

For one class of adsorption systems, however, there does exist a large quantity of easily
interpreted experimental data and a good theoretical foundation formulated in quantum mechanical
terms. This class consists of adsorbed cesium plus an additive on an insulator substrate. [t is
possible in this unique system to proceed logically from (a) the one-electron Schrodinger equation,
to (b) the two-body interaction, to (c) the conductivity relations, dipole moments, and equations of
state. Effects of the additive gas can be analyzed. Comparisons of theory with experiment are
excellent,

As stated in the Contract Objective, the purpose of the report to follow is to fully under-
stand this unique system of cesium adsorption on insulators.

Experimental studies'"3 have previously shown that there is a little chemical reaction
between cesium and insulators, the data are reproducible, and a great variety of properties can
be measured, such as electrical conductivity, thermoelectric effect, diffusion and kinetics of
adsorption. Finally, because the insulator substrate is electrically inert, electrical effects
caused by adsorbed cesium can easily be distinguished from the bulk substrate and observed
over many orders in magnitude.

Theoretical studies to be described here represent an attempt to unify much of this ex-
perimental data into one coherent fabric. The approach is fundamental in the sense that there is
a logical development from the general quantum theory of surface donors to the equations for
electrical conductivity.

To be specific, in Section B.the nodal wave functions of isolated donor atoms are ex-
plicitly derived, and in Section C. the details of donor wave function distortions are calculated
by a variational technique for an arbitrary surface asymmetry potential. Only fundamental con-
stants — Planck’s constant, electron mass, electronic chatge, and dielectric constant — enter
into the relationships. The ground state of a surface donor, like cesium on an insulator, consists
of one lobe of a 2p wave function penetrating into the insulator. The formalism is simple and
elegant.

In Section D. the interactions between surface donors are considered. Explicit calcula-
tions of the quantum mechanical resonance integral between two surface donors are made, which
lead to a theoretical expression for electrical conductivity. The conductivity mechanism consists
of electron tunneling with phonon losses due to vibrational coupling of the donor to the lattice,



The donor phonon energy is explicitly calculated. Calculations show that conductivity should
be proportional, in the first approximation, to the cesium coverage squared.

In Section E.,the equation of state is computed which relates coverage to surface tem-
perature and vapor bath temperature. At the low coverages of interest, the coverage is theoreti-
cally proportional to the cesium vapor pressure; also, the conductivity should theoretically be
proportional to the vapor pressure squared. Two unknowns appear in the equation of state: the
adsorption heat and the configurational entropy change.

Section F. is a summary of the experimental data obtained and Section G. is a comparison
of these data with theory. Conductivity is found to be proportional to vapor pressure squared in
exact agreement with theory. The adsorption heat and entropy change are unambiguously computed
from the data. Theoretical dependences on dielectric constant and contaminant gases indicate
long-range ordering of cesium donors. Finally, Section H. reviews the main conclusions of this
effort.

The theoretical understanding of cesium adsorption processes on insulators has gradually
evolved from more primitive concepts which were discarded as more experimental and theoretical
evidence was accumulated. One early conception of surface conduction through the substrate
conduction band had to be discarded because, experimentally, the conduction magnitudes on glass
and sapphire substrates were similar even though glass exhibits a pootly defined band structure.
Another conception of adsorbed cesium diatomic molecules had to be discarded because, theoreti-
cally, cesium atom interactions yield a pressure squared dependence on conductivity and, experi-
mentally, transient desorption experiments indicate adsorbed cesium atoms. Finally, a third
conception of impurity band conduction due to cesium-cesium surface band formation had to be
discarded because theoretical calculations showed that the interactions are too weak to form such

a band.

The present concept of tunneling conductivity between adsorbed cesium atoms not only
has a good theoretical foundation but also agrees well with experimental data taken up to the
O g p
present time.

The novel and successful theoretical tools developed here could be extended next to the
more complex system of cesium plus additive adsorbed on a metallic surface. The extra complexity
largely arises because Wannier functions, which are stationary wave packets in metallic bond
theory, must be used. Such a fundamental study follows naturally from the present effort and would
be especially important, considering the current trend of introducing additives into thermionic
energy converters.

B. NODAL HYDROGENIC WAVE FUNCTIONS*

A donor atom located on a semiconductor surface will have properties considerably dif-
ferent from a donor atom located in the semiconductor bulk. Three examples of surface donors
would be: a phosphorus atom located on a silicon surface, a sodium atom on a sodium chloride
surface, and a cesium atom on a sapphire surface. An understanding of surface donor properties
is important to adsorption physics, to catalysis, to thin-film formation, and to certain electronic
devices dominated by surface effects. Also, the quantum mechanical properties associated with
the chosen donor potential are simple and elegant.

A surface donor atom is considered to be an ion core plus a valence electron moving about
it in an atomic orbital, in accordance with quantum mechanics. Such a condition will prevail at

* Part B will be separately published in Phys. Rev. (1965).



low temperatures and is the condition of interest. At high temperatures the donor may become
ionized whereby the valence electron moves in the crystal conduction band, and Poisson’s
equation and Fermi-Dirac statistics must be used. We consider only the electronic structure of
an isolated surface donor atom before ionization.

Many workers4-6 have attempted to calculate surface wave functions and energy levels by
considering the adsorbate and substrate as a giant macromolecule. Because the periodicity of the
crystal lattice is disturbed at the surface by the adsorbed species, new (Tamm-like)} adsorption
states appear, which can be calculated from quantum mechanics. The calculations are extremely
complicated so that physical insight is frequently lost in the mathematics. In addition, grossly
simplifying assumptions must be invoked so that energy calculations are at most qualitative.

Weisz’ has attempted to calculate the donor ionization energy E; by using simple adsorp-
tion ideas. He considers E; to be fixed by the difference of the ionization potential I of the free
vapor atom and the work function ¢, of the crystal. According to this idea, if I > ¢, then a metallic
adsorbate would not be spontaneously ionized to form a conduction electron. But a phosphorus atom
(I = 10.9 eV) located inside a germanium crystal (¢, = 4.5 eV) is experimentally known to be easily
ionized (E; = 0.01 eV) even though I> ¢, Thus the (I - ¢,) criteria and the *‘boundary layer
theory of adsorptlon on which it is based® are open to serious question.

The approach taken in the discussion to follow is different from the two approaches men-
tioned above. Essentially, it is an extension of the established quantum mechanical theory of a
donor atom located within a semiconductor.?*!1 In this theory, the semiconductor is assumed
electrically inert except for providing a dielectric constant x. Such an assumption allows calcu-
lation of hydrogenic wave functions and energy levels which agree with experiment. For example,
a simple theoretical calculation of E; for silicon based on « = 12.0 and effective electron mass
equal to the free electron mass ylelds E = (hydrogen ionization energy)/x? or 0.094 eV. For
comparison, E; for Li, P, As, and Sb donors in silicon is experimentally found to be 0.041 eV + 15%.
A more realistic theoretical calculation,’ taking into account the separately measured effective
mass tensor, yields 0.029 eV. Reasons for the discrepancy of 0.012 eV between this refined value
and experiment are attributed to the effect of the donor ion core. Similar considerations hold for
donors in germanium. This theory has also predicted wave functions, excited state energies, and
the effect of strains, electric and magnetic fields in good agreement with experiment. Methods of
extending these ideas to a donor located at the surface of a semiconductor crystal are described
below. A similar analysis also applies to surface acceptors.

1. Potential Function

Consider a donor atom located on the surface of a dielectric crystal. The potential function
V (r,0,¢) is chosen to be

— e?/«r inside the dielectric (1a)

V(r, 8,4
V{(r,0,¢)

+ oo outside the dielectric (1b)

which is shown by the solid line in Fig. 1. Here e is the unit electronic charge and « is the crys-
tal dielectric constant, taken for simplicity to be uniform up to the crystal boundary. The coordi-
nates r, ¢, and ¢ are the usual spherical coordinates arranged so that the z-axis (z = rcos §) points
in the direction perpendicular to the surface. In particular, the dielectric half-space is represented
by z >0, or 0 < 8 < #/2, and the vacuum half-space is represented by z <0, or /2 < 8 < 7. The
potential is arbitrarily referred to zero when the valence electron is in the crystal bulk conduction
band (r » =, 6 < n/2).



The chosen potential is in fact an excellent approximation to that of a real surface donor.
Qualitatively speaking, the valence electron is energetically most stable within the dielectric half-
space because of the high electron affinity X there. Quantitative statements can be made by refer-
ring to a more accurate outside potential, X — e2/r, shown in Fig. 1 by the dashed line. The pro-
posed infinite magnitude of V in Eq. (1b) seems justified since X(= 1eV) is frequently 10-100
times the surface donor ionization energy E; as will be shown later. The proposed step potential

of V at the surface z = 0 (or 6 = #/2) requires more justification. Consider points A and B in Fig. 1.

V4
ELECTRON IN VACUUM
VAR,
\
\
\\
X \
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\
\
|| ELECTRON {N CONDUCTION BAND
!
-2 ¢
ol
E |
[
4

BOUND ELECTRON

Fig. 1. Potential of an electron as a function of position. A
dielectric crystal occupies the half space z >0 and a
positive donor ion is located at the surface z = 0. In

the approximation discussed in the text, the solid line
is the effective potential.

Point A is located at the conduction band level where V=0 and z, = e?/X. Point B is located at
the lowest donor level V = - E; and zy = ez/(X+Ei). The difference between z, and zy is canlcu-o
lated to be & = e? E;/x?. Typically, for E;=0.1eV and X =1eV, one obtains §~0.1x13.6/1x1=~1 A,
which is less than one lattice constant. In summary, when the potential function varies from

V = -E; to V =0, the potential barrier at the left of Fig. 1 varies by approximately 1 A while the
barrier at the right varies from approximately 10 A to . Thus, the step change in the potential

function at the surface seems justified for calculating surface donor energies, especially if
E,/x <0.1.
1

2. Wave Functions

The Schrédinger equation for the wave function ¢(r,8,¢) and the donor energy E of a single
valence electron is

h2v?2
8772;1.*

'J’(f,@,qﬁ) +[E - V(r’67¢)] (r,8,6) =0 (2)

where h is Planck’s constant and p* is the effective electron mass in the nontensor approximation.



The allowed wave functions satisfying Eqs. (1) and (2) are simply those hydrogenic wave
functions which have a planar node at the crystal boundary, 6 = #/2. To be specific, the wave
functions dre listed below with Pauling’s normalization!?2:

Outside the dielectric

¥(r,6,¢) =0 (3)

Inside the dielectric

b (1,6,6) =R _4(0) 0, () () (4)
3 %
2N et I* 2 4 2den
Rn/f,(r) = {<Kna=;> 2n[(n+’ﬂ)']3s e 14 Ln+/{;/ (P) (S)
0, (0 - v | 2L DA ImDN Bl g ©6)
Am 2(2 + |m|)! 4
o _(g) - —L ™ 7)

where p and a* are defined as

- _2r d * _ h? 8
p xna¥ a0 %o 42 pr e? ’ ®
and the functions Lz/ﬁ +1( ) and P‘m| (cos 6) are the associated Laguerre polynomials and the
n +’£ P ’E g P y | l
[98]

associated Legendre polynomials, respectively. From the known properties of P/ﬁ (cos 6) it

follows that the requirement of a planar node at 6 = #/2 is exactly equivalent to a ‘'surface

selection rule’’:

(4 + m) = odd (9)

Provided this rule is obeyed, the total wave function, equal to the sum of Egs. (3) and (4), is
continuous at the boundary, § = #/2, and is identically zero there. A continuity in the slopes of
Egs. (3) and (4) at the boundary is not required because of the infinite potential wall.!3



Six consequences of the restriction to half-space and the surface selection rule, £+m=0dd,
are described below:

(1) All spherically symmetric s wave functions are forbidden for surface donors. In addi-
tion, the entire electronic shell with n =1 is forbidden.

(2) The ground state of a surface donor is formed from one lobe of a 2p wave function.
Schematic plots of all the allowed p, d, and f wave function orbitals for surface donors are de-
picted in Fig. 2. These plots represent stationary wave functions obtained from linear combina-
tions of Eq. (4) using + m values. All of the wave functions give rise to nonzero dipole moments.

Pz dy, dy;
nz2,l=1,m=0 | n23,l=2,m=21| n23,l=2, m=#I

z z z
+ -
X X ) y

f523_3,2, fix2_y2) Fayz
nz24,l=3,m=0 |n24,l=3,m=%2|{n24,l=3, m=%2
(4 LOBES) (4 LOBES)
4

4 4
+ + - +
X X X

Fig. 2. Schematic angular orbitals for some surface donor wave functions.

(3) The degeneracy of a subshell of constant 4 is equal to 4, which is smaller than the
value (24 + 1) required in the rule’s absence.

(4) The totality of electronic states with spin-up and spin-down in a complete shell of
constant n is n(n-1), which is about half the value 2n? required in the rule’s absence.

(5) Radiative dipole transitions between excited donor states are allowed, subject to the
restriction A4 = +1, corresponding to light polarized in the surface plane. Transitions for
Af = +1, m =0, corresponding to light polarized perpendicular to the surface plane, are forbidden.

(6) Since @){m(e) of Eq. (6) vanishes by definition in the vacuum half-plane, its normalized

amplitude must be multiplied by V2 in the dielectric half-plane. The required normalization
factor V2 is explicitly included as the first factor of Eq. (6).



3. Expectation Values

Using the wave functions of Eqs. (4) to (9) the expectation values of any parameter W can
be calculated from the definition W= f[fy*Wydr. Expectation values of many parameters — electro-
static energy, potential energy, total energy, radius, orbital angular momentum, and the z compo-
nent of angular momentum — are independent of the surface selection rule (£ + m) = odd. Hence,
these parameters have a direct correspondence with excited states of a donor atom immersed in
the bulk of a dielectric crystal.

In particular, the energy levels E  are given by

E .. e* _ Eu¥ (10)
n 2120 2a* 2,2
kn-a¥ K n*p

where Ey; is the well-known hydrogenic 1s ionization energy, 13.6 eV, and p*/p is the ratio of
effective to free electron mass. But because n > 2 for a surface donor, the 2p ground state energy
of a surface donor corresponds to a 2p first excited state of a bulk donor. The ionization energy
E; of a surface donor is therefore 1/4 that of a bulk donor. Typically for x = 5 and p*/p = 1, the
lonization energy is =0.1 eV as anticipated in Section B.2.

The mean radius T is given by

Ty =n’kal 1+§— [1——)6—({”{'1 (11)

2

which becomes r,; = Ska* for the surface donor ground state. Typically, for x =5 and p*/p = 1,
t,; =13 A. The large radius, coupled with the [act that the wave function vanishes at the center
of the donor ion core, shows that the energy levels are insensitive to a local non-Coulombic
potential caused by the ion core. Hence, for nodal wave functions on a high « crystal, the
Coulombic potential function of Section B.2 seems to be an adequate approximation.

The mean dipole moment M is nonzero for all surface donor states due to the surface asym-
metry. Its magnitude for the 2p ground state is

M;p = €2, = (15/4) exal (12)

which for « = 5 and p*/p =1 gives M, = 43 Debyes; this is an order of magnitude greater than
dipole moments of diatomic molecules.

4. Discussion

The properties of a hydrogenlike atom placed in an electric field, a magnetic field, and a
crystalline field have been thoroughly investigated in the literature, and are here extended to a
different surface field having the potential of Eq. (1). Because only certain surface donor wave
functions are allowed, the consequences of a surface effect are predicted to be much more ex-
treme than the Stark or Zeeman effects which may be handled by ordinary perturbation theory.
Whether or not the family of surface wave functions predicted here is realistic is a question to be
decided by careful experimental measurements. At present, these have not been carried out for



the system of an isolated donor atom located on a semiconductor or an insulator crystal surface.
Infrared spectroscopy would probably be the most informative experimental tool for this investi-
gation.

It is a simple matter to extend the theory presented here to related problems. An extension
to acceptor atoms located on semiconductor surfaces shows that similar surface energy levels are
obtained, being occupied by a valence band hole instead of an electron. An extension to diatomic
molecules located on semiconductor surfaces shows that axially symmetric 2-bonds are forbidden,
while 7-bonds and A-bonds which have the acceptable planar node passing through the two nuclei
are allowed. An extension to a donor atom with two or more valence electrons is more complicated,
but would follow the general procedure used for free atoms in the vapor state. Effects due to donor-
donor interactions can also be considered, if desired. The primary interaction is a dipole-dipole
repulsion which tends to keep the adsorbate atoms equidistant. Large changes in a single atom’s
energy levels, due to the dipole field of neighboring atoms, are unlikely.

The large dipole moments of surface donors predicted by the theory may be used in device
applications for forming low work function surfaces or for extracting tunnel currents through a
thin insulator.

Finally, the predictions presented here can be derived in a different way by choosing the
z-axis to lie in the surface plane* and investigating the nodes of the ®(¢) function of Eq. (7).
This approach allows one to determine, by inspection, that the degeneracy of an £-subshell is
£-fold.

C. GRADUAL DISTORTION OF HYDROGENIC WAVE FUNCTIONS

The purpose of this section is to extend the ideas of the last section to a more general
problem: the calculation of hydrogenic surface wave functions for arbitrary surface asymmetry and
arbitrary atomic potential function. Such a general treatment allows one to visualize a situation
where surface wave function distortions can be followed as smooth functions of surface asymmetry
potential.

Consequences of these distortions are surface tension, surface dipole moment, surface
free energy, and catalytic activity. For the cesium on insulator case of particular interest, this
section displays the wave function distortions of a cesium atom ground state and all the excited
states as a dielectric surface is approached. More important than the numerical calculations of
this section, however, are the broad qualitative insights into surface phenomena.

1. Surface Hamiltonian and Wave Function

Consider an isolated positive ion located at the surface of a nonmetallic solid or liquid.
The ion attracts a valence electron in a closed hydrogen-like orbit to form a surface atom. A
metallic solid does not have closed valence orbitals and must be treated differently using Wannier

functions.

Energy levels E of closed orbitals on nonmetallic solids can be computed from the one-
electron Schrodinger equation:

Hy = Ey (13)

*W. B. Teutsch, RCA Laboratories, personal communication.



The Hamiltonian H pertaining to the surface is idealized for simplicity to be:

H=H_ +W" (14)

t

where H_ is a spherically symmetric part and W™ is an asymmetric part due to a ‘“‘surface wall,”’

idealized as a step function:

0 forz>0
W = (15)
W for z <0

The coordinate z is chosen normal to the surface such that the half-plane z > 0 is inside the
material where the wall W~ vanishes. The other half-plane z < 0 lies outside the material where
the wall is nonzero and constant. The wall repulsive potential will be allowed to vary over the
entire range 0 < W < . A sketch of the potential function V associated with H is given in Fig. 3.

‘V

Fig. 3. ldealized potential function of a hydrogenic atom
jocated in the surface plane z = 0. W represents a
step function which is constant for negative z.

The wave function ¢ pertaining to the surface atom bonding orbital is chosen to be the
sum of a symmetric and an asymmetric part:

Y=cpy; +c,y¥; (16)

Here ¢, is a spherically symmetric wave function (such as a 1s hydrogenic function) satisfying
the eigenvalue equation for W = 0

Ho ¥, =E; ¢, (17)



and ¢1J2“ is an asymmetric nodal wave function (such as one lobe of a 2p hydrogenic function)
defined by the step function

Y, forz >0
v3 = (18)
0 forz<0
This function satisfies the eigenvalue equation in the limit as W™ » «
H(W™ > o) 43 = E, ¢} (19)

The asymmetric nature of the wave function ¢} completely avoids the infinite asymmetric poten-

tial W™ so that there exists a bound surface state even though W > «. A systematic investigation

of the properties of allowed wave functions y7 has already been carried out in Section B. for

the case of a Coulombic H_. The probability coefficients ¢, and ¢, are functions of W and will
be calculated later.

There also exist antibonding surface states defined by the wave functions

by =y +Cy Y3 (20)

which by definition cannot avoid the wall repulsive potential and represent an energy E, which
approaches infinity as W does.

The expansion of ¢ in Eq. (16) into two components represents only an approximation to
the true wave function satisfying H. With particular choices of ¥, and y%, however, the hybrid
energy states are practically correct near the limiting cases of W = 0 and W = «, respectively. In
the intermediate case 0 < W < o, the accuracy of the calculation can be improved by considering
more functions of the Y, and g[/; type. The gross idealization of the wall potential W=, however,
does not justify a more elaborate expansion than that given in Eq. (16). The ground state and all
excited states of ¢ will be considered in detail for a Coulombic H in Section C.3.

2. Variational Calculation
To minimize E for arbitrary W the standard variational technique is applied to Eq. (13)
yielding the set of relations:
H,;, -E)c; +(H;, -AE)c, =0 (21a)

(Hy;, -AE)c¢; +(H,, -E)c, =0 (21b)

where the normalization is, with i, j = 1,2

f* 4 1 fori =
idr= (22)
! A fori #j

10




and the expectation value of the Hamiltonian is

Hij=f¢,’{ (H, + W)y, dr (23)
such that
H,-E + ¥
11 1 + 2
H,, = E, (24)

Because of the unusual properties of the step functions 3 and W™, a few comments are necessary
to show how the H;. terms are derived. H,, is derived by using the eigenvalue equation for
(Eq- 17); the coefficient 1/2 of W is necessary because W™ is nonzero only over half-space. H,,
is not derived from an eigenvalue equation. Rather, H,, is merely the expectation value of H in
the state of 3. The cross terms H, , and H,; are equal and are derived by operating with H on

, forwards and backwards, respectively, using Eqgs. (17) and (22). If H is allowed to operate on
,, the same result is obtained, but with the complication of a nonvanishing delta function contri-
bution at the origin due to the kinetic energy term V2 wh.

To solve for the energy E it is convenient to introduce a dimensionless energy ¢ of the
bound state E, and a dimensionless energy o of the wall W, as follows:

o ECED L w (25)
(E,-E,) 2E,-E)

Since all bound state energies E, E|, and E, are negative, the quantities (E, ~E;) and (E-E))
are positive, so that ¢ and o are positive. The secular determinant then becomes

=0 (26)

and the dimensionless binding energy is

_w+l- flo-1?+4A%0
21 ~ A?)

(27)

which is plotted as a function of w in Fig. 4 for a selected particular value (Sect. C.3) of
A = 0.296. The figure shows that ¢ ~ o near =0 and that ¢ > 1 as o » «. Actually, for v = 2,
the dimensionless energy. becomes ¢ = 0.94 so that as far as the energy levels are concemed, an
“infinite wall’’ occurs when w > 2.

The effect of gradually ‘“‘turning on’’ the wall potential is seen to be a gradual raising of
the energy levels of surface atom valence electrons. This effect actually occurs as evidenced by
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the increase in free energy when a new surface is exposed. ‘‘Dangling electron bonds’’ can be
visualized as hydrogen-like orbitals forced to occupy high energy states due to the surface
asymmetry. Energy is released when symmetry is restored. These conclusions are independent of
the precise forms of H and W™.

1.0 — 1 T ] T T 1T T L I I R

00 AT (R U KN S NN NUUN SN SN A N A
00 04 0.8 1.2 1.6 2.0 2.4 2.8 3.2

w=W/2(E_-E)
2
Fig. 4. Dimensionless energy ¢ and dipole moment M plotted versus

dimensionless wall potential w. As w increases to infinity,
€ and M both increase and approach unity.

By combining Eqs. (21) and (27) the wave function coefficients are calculated to be

eA
_ (28a)
T T 97 (18D ;A2 :

- 1-¢ 28b
V(1-6)2 (1-A2) + A2 (280)

<,

and are plotted as functions of w in Fig. 5 for A = 0.296.

The changing valence bond character can be inferred from this figure using simple con-
cepts of physical chem1stry The coefficient cl qualitatively represents the fraction of covalent
character because ¢, is a symmetrical wave function characteristic of a covalent bond. The
coefficient c2 qualitatively represents the fraction of ionic character because 3 is an asymmetric
wave function characteristic of an ionic bond. Finally, the coefficient 2Ac;c,=1- cf ¢ quali-
tatively represents the ionic-covalent resonance contribution to the bond character.
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Fig. 5. Fractional bond character variation with wall potential.

c% = covalent fraction.
2 _ .. .
c5 =ionic fraction.

2c-|c2A = resonance fraction.

These coefficients are also useful for calculation of the surface dipole moment,
M = efy*zydr, which, when expanded yields

M=ec§f¢§z¢;dr+2ec1c2./;bl zyydr (29)

An explicit calculation of M can be made if the functions ¢, and ¢ are reasonably esti-
mated. One simple estimate of ¢, and 3 can be made when H_ is taken to be Coulombic as shown
below.

3. Application to a Coulombic Hamiltonian

Many of the results of the preceding general treatment will become clearer if a particular
single electron Hamiltonian H is discussed in detail. For this purpose we choose a Coulombic
Hamiltonian

2v2 2

H -_ -h?V2 e

o 820 - (30)
2

where p* is an effective electron mass and « is a dielectric constant. Other Hamiltonians pos-
sessing bound states would yield qualitatively similar conclusions.

The eigenfunctions of H, + W™ in the limit of W > 0 are of the symmetric ¢, type and are
labelled l/;n{m(r,e,qb) where n, 4, and m are the usual hydrogenic quantum numbers. The spherical
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coordinates r, 6, and ¢ are oriented such that the vector 6 = 0 points into the material and the
plane 6 = #/2 lies in the surface plane. Energy levels E_ are given by

*

.- L (31)
h2k2y

where E; is the Bohr energy, 13.6 eV. Wave functions of a constant £ subshell are (24 + 1)-fold
degenerate, and of a constant n shell are 2n2-fold degenerate, including spin up and down. Energy
levels with fine splitting of the degenerate levels greatly exaggerated are shown at the left of
Fig. 6 corresponding to W = 0. The three symbols labeling the levels refer to n, 4, and m quantum
numbers, respectively, and the notations m and m refer to plus and minus z components of angular
momentum.

r433433
432
43243T =
43| 433+
42322 43017
4{*°S422 32414
all 417
410
400
z 73
72
- 5/ T
323
322, - ! -
32 32 /] ) 35
al 32mt 3
33320 3
310
300

217
2l
2 210+ 2
{ZOOZIO

[W=0 O<W <o W=

Fig. 6. Variation of Coulombic energy levels as the wall potential is turned on.
Degeneracy of constant n shells is greatly exaggerated to show splitting
into bonding states on the right side of the figure and antibinding states
are shown as arrows pointing to the crystal continuum.
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The binding eigenfunctions of H, + W™ in the limit of W » « are of the asymmetric 7
type and are labelled ¢+/{’, (r,6,¢). These functions all vanish in the negative half plane
n-‘Lm

7/2 < @ < = where the wall is located, and have planar nodes at 6 = »/2. The selection rule for
planar nodes is £ + m = odd. It follows that wave functions of a constant n shell are 4 -fold
degenerate, and of a constant n shell are n(n-1) fold degenerate, including spin-up and -down.
Energy levels with exaggerated degeneracy are shown at the right of Fig. 6, corresponding to

W > «. There are, of course, an equal number of antibonding eigenfunctions labelled ¢~ ) (r,0,¢),
but their energy levels blend into the material continuum and cannot be shown in Fig. 6. " ®

To complete Fig. 6, the eigenfunctions ¢ must be selected for an arbitrary W between the
limits of 0 and . In accordance with Eq. (16) we select a linear combination of wave functions,
one from the left of Fig. 6 and one from the right, Two plausible arguments point to a unique
selection procedure. First, the presence of W which is axially symmetric cannot perturb rhe quan-
tum number m, so connecting lines should be drawn with constant m. Second, it is most likely
that states combine which have the same number of radial nodes. Thus, connecting lines should
have constant (n —4). Bound states are formed when £ +m is odd:

Y=Y i T S2Vidm (32)

Using these rules, connecting lines in Fig. 6 indicate how the bound states vary in energy over
the entire range of W. The small arrows in Fig. 6 indicate that an identical number of unbound
states pass into the crystal continuum.

If this very simple scheme is observed, then all bound and unbound states are accounted
for. As far as the bound states are concerned, the effect of the surface potential W is to increase
the quantum numbers n and 4 by one unit each and thus to reduce the binding energy of the ground
state and all excited states,

[llustrations of ¢ as functions of W are schematically drawn in Fig. 7 for a few of the
lowest states. At the left is the limit W = 0, at the right is the limit W = , and in the center is
an intermediate W. As W increases, the wave functions are forced into the interior of the material
with no new radial nodes arising, like an elastic jelly. The elastic jelly is, in fact, a close me-
chanical analogy, since the presence of a free surface is known to increase the free energy of the
material,

The energy and the dipole moment associated with each line in Fig. 6 for arbitrary W can
be computed from Egs. (27) and (29), provided «, u*/u, E,, E, and A are specified. As a particu-
lar example, consider the ground state composed of the normalized wave functions

-r/a*
Y100 = —a— (33)
100 1/ 2(a%)3/2
- 2a*
+ _ rcosfe /225 (34)
210 4nl/2 (a*;)S/Z
where
Kiua
at = o (35)
I
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and a_ is the first Bohr radius, 0.53 A. The energy difference becomes (E, -E;) = (3/4) e2/2xa*
and the overlap integral becomes A = 0.296. This value of A was used to construct Fig. 4.

¥ = C %o+ Ca¥210
z :
; ;
¥ =C Yoo +Co ¥30

©- |-Q-| Lk

¥ = C Vo * Ca ¥3p

ey | S | oo

wW=0 O<W<eo W=o

Fig. 7. Variation of three wave functions as the wall potential
is turned on. Wall squeezes wave functions into the
dielectric with no new radial nodes arising.

The above functions can also be used to explicitly calculate the dipole moment M, of the
ground state

Mg = 175 ea’; C:ZZ + % ea’(’;clczA (36)

which can be expressed in conventional Debye units (10718 esu-cm) as

M = 5B (9.54 c2 b
eSO (9.54 ¢5 +0.79 c;c,) Debyes (37)

It is convenient to define a dimensionless ground state dipole moment, My = M /(9 54 K[,L*/}l)
which can also be plotted in Fig. 4 as a function of dimensionless wall energy @.

Thus, the details of surface phenomena on dielectric materials can be explicitly calculated
for ground states and also excited states without adjustable parameters.

4. Application to Cesium on Insulators

It is of interest to use the formalism developed here to compute the extent to which a
surface cesium atom occupies a ls or a 2p ground state. The criterion for whether the cesium will
be in the 2p ground state is whether the wall potential is large compared to the binding energy.
As seen from Fig. 2, the 2p state is essentially attained when » > 2.
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To compute w for cesium on sapphire, estimate k=9 and p/p* =1. Then E; = 13.6/9? = 0.168 eV
and E, = E,/4 = 0.042 eV. The wall potential  is essentially the electron affinity X > 1 eV. For
cesium on sapphire, then

1 =
2 % (0.168 - 0.042)

'

so the ground state would essentially be a 2p nodal wave function with one lobe. A similar cal-
culation shows similar results for alumina and glass substrates where « = 5-9. The following
calculations will therefore be based on 2p cesium wave functions for the surface ground state.

D. THEORY OF TUNNELING CONDUCTIVITY

Using the donor wave functions of Sections B. and C., it is possible to explicitly calcu-
late electrical conductivity. The conductive mechanism considered here is electronic tunneling
between surface donor atoms. Tunneling, hopping, and quantum mechanical resonance are all
terms that will be used interchangeably to describe the same process.

Most of the derived equations contain only fundamental constants such as Planck’s con-
stant, unit electric charge, and electron mass. Other derived equations contain material constants
such as ionic radius, interatomic spacing and atomic mass. The material constants are only nec-
essary in the calculation of phonon energies. The approach taken here is unique in the sense that
conductivity can be theoretically calculated a priori, without referring to conductivity data. Pre-
dictions made in this theoretical section agree very well with the experimental data as shown in
later sections.

1. Tunneling Equation

Consider a line of donors on an insulator surface as schematically shown in Fig. 8a.
Donor wave functions are of the 2p nodal type, penetrating into the insulator.

ION CORE
VALENCE WAVE FUNCTION

VACUUM

SRS
JoRORERRIES

00108 [6]%
ELECTRODE

I

PHONON TRANSITION Ep

(b)

Fig. 8. Conduction due to a line of donor atoms on a surface.
(a) Wave functions.
(b) Energy states as a function of position. Wavy lines
indicate phonon transitions which dissipate electrical
energy.
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In the absence of an applied electric field electrons can freely tunnel from one donor to
another; electronic motion is random and isotropic. There is no drift current.

In the presence of an applied electric field a drift current must appear. This current is a
small perturbation added to the random tunneling motion. At the present time, concepts of tunnel
drift current are poorly understood. One very simple equation for tunnel drift current has been
derived by Arnold and Patterson,'4 but it has the conceptual weakness that it contains the thermal
energy kT. Tunnel conductivity and field emission are quantum mechanical processes which should
be temperature independent, to a first approximation.

The purpose of the derivation to follow is to modify the basic idea of Arnold and Patterson
by essentially replacing kT by the lattice phonon energy E_. The derived equation is still not
rigorously true, but it has three advantages: it is very simplie to apply to experimental data, it is
temperature independent, and it rests on a more secure foundation than the equation of Arnold and
Patterson.

To calculate the drift current between two adjacent donors in the field direction, the fol-
lowing relationship is useful:

(drift current) = (random current) » (drift probability) (38)

The random current can be written as
(random current) = eE, /h (39)

where e is the unit electric charge, E, is the tunneling energy (dependent on donor spacing) and
h is Planck’s constant. The ratio E /h is the frequency of random tunneling.

The drift probability is a more difficult concept to apply.'# If one recognizes that all
electrons in the drift current eventually dissipate energy, then the drift probability should nearly
equal the energy dissipation probability, so that

(drift probability) = eVa/Ep (40)

where eV is the potential energy acquired between adjacent donors, and E_ is the phonon energy
which is responsible for energy dissipation in quantum processes. Arnold and Patterson (erroneously)
used kT instead of E | in the above expression. The term V, is normally very small (~ 107 V),

being equal to the applied voltage (normally ~ 1 V) divided by the number of donors in a line
(normally ~ 109). Since E_ is normally ~ 1072 eV, the drift probability is normally calculated to

be ~ 1074, Two important fimiting cases arise: when eV _ vanishes, the drift vanishes; and when

eV, equals E_| each tunneling electron liberates a phonon to the substrate lattice. The production

of phonons is indicated by the wavy lines in Fig. 8b. In essence, the phonon transitions act as
mechanical ratchets since they restrict electrons to drift only in one direction.

By combining Eqs. (38)-(40) the interatom drift current becomes

2
e“E V
o t'a
fa T hE (41)
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The interatom conductivity is then given by

~ i, _ eZE[ (42)
5277V, ThE,

Note that g_ is Ohmic (i.e., g, is independent of V). If a square lattice of donors is assumed,
then g, equals the conductivity per square g_. The desired relationship between the measurable
quantity g_ and the atomic parameters E_ and Epis therefore

e2Et 4
gD - hE ( 3)
P
or
gy = 0.385x 1074 Et/EP mhos/square (44)

It should be recognized that the hypothetical square lattice of surface donors is not related to the

substrate lattice ar all; instead, the donor lattice varies continuously as the donor coverage varies.

The donor lattice merely expresses the idea that interdonor repulsive forces are effective in es-
tablishing a more uniform distribution of donors than if the donors were in the random positions.

Explicit calculations of the tunneling and phonon energies, E, and E, are given below.
Note that e?/h is a fundamental constant having the dimensions of conductivity.

2. Tunneling Energy

The simplest and most carefully studied system exhibiting electron tunneling'4-13 is the
hydrogen molecule ion HY. The single electron can be located either about one nucleus or the
other, but because each of the locations is equally probable, the electron resonates, or tunnels,
between the two nuclei. The tunneling frequency v, associated with the process has an associated
tunneling energy E_given by E = hv . For H}, the tunneling energy (also called the exchange or

resonant energy) is given by

E, - _iZ fﬁ//*(r)rtﬂ(l—ﬂ) 43 (45)

where ¢*(r) and (L -r) are 1s hydrogenic wave functions centered about locations 0 and L,
respectively. Essentially, E_is the Coulomb energy e?/«r averaged over the resonant wave func-

tion probability, w(r) (L —r).

Arnold and Patterson'4 have used Eq. (45) to successfully explain certain tunneling
phenomena in alkali-ammonia solutions. In particular, they incorporated 1s hydrogenic ground
states for the alkali atoms.

To use Eq. (45) in surface tunneling phenomena the wave functions in the ground state
must be of the 2p type. Tunneling integrals of two atoms with parallel 2p wave functions have
fortunately been explicitly calculated by Kopineck.'6:17 The molecular designation of the overlap
is called #- 7 overlap, meaning that one nodal plane passes through the two nuclei. Because of
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this nodal plane, Kopineck’s tunneling integral, which he calls J__, is identical to twice his
integral taken over only one half-plane. But since the ground state surface wave functions have a
V2 normalization (Section B.2), Kopineck’s ] is fortunately equal to the surface tunneling
energy of Eq. (45). This allows Eq. (45) to be written in expanded form as

E . —e?a? exp (- a) [1+_3_+ _3_:, (46)

‘ 12K2a’; a a?

Here ais a dimensionless interdonor spacin arameter, dependent on dOl'lO[' coverage. To be
’
precise, a is defined as

a= LK (47)
2Kao#

where L is the interdonor spacing, « is the dielectric constant, a_ is the first Bohr radius, and
p*/u is the ratio of effective to free electron mass.

If a square lattice of surface donors is assumed (see part D.1), the L has a simple
relationship to the donor surface coverage. The relationship follows because the density of
donors per unit surface area can be written in two ways which are equated to obtain

o6 =L (48)

Here o is the surface densit?/ at one monolayer and 6 is the fractional coverage. Equation (48)
has been quoted by deBoer, '8 Topping,'? and many others for square adsorbate lattices; also, a
minor variation of Eq. (48) has been used by Langmuir?? for hexagonal adsorbate lattices.

The relationship between the dimensionless spacing a and the coverage 6 is obtained by

combining Egs. (47) and (48):

2
Lz - (4oa?) &2 (#_Ii> 6 (49)

If o is taken equal to 4.8 x1014 cm™2 (characteristic of cesium at one tightly packed monolayer)?’
then the first bracketed coefficient in Eq. (49) is equal to 0.0054. Note that 8 is proportional to
-2

a .

With this information it is instructive to carefully examine the variation of tunneling energy
with coverage. To eliminate e?, «, a,, and (u*/u) from the discussion it is convenient to normalize
the tunneling energy E by dividing it by the ionization energy E; of Eq. (10). After rearrangement
Eq. (46) becomes

E 2 _
t _ @ exp( a) < _3_ 3 )
BE, 12 Pt G0

The above equation is arranged with foresight such that the right-hand side is precisely Kopineck’s
tunneling integral which he tabulated from a = 0.5 to a = 7.0. We have extended the range from
a=7.0 to a = 12.0. It is thus possible to plot E /E; as a universal function of the dimensionless
parameter a.
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A more conventional plot, however, can be constructed in the following way recognizing
that 6 is proportional to a 2. This plot is shown in Fig. 9. Here the ordinate, E,/E;, is propor-
tional to the tunneling energy; and the abcissa, a2, is proportional to the coverage of surface
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Fig. 9. Dimensionless tunneling energy versus a 2, which is
proportional to coverage. The dashed line is an adequate
approximation for a large range of E /E..

donors. The curve on this graph is universal, being independent of x and p*/u. Four conclusions
emerge from examining this plot:

(1) E,/E; > 1 at high coverages, indicating that there is more electron delocalization than
electron localization. Conductivity is metallic and traveling Bloch waves of the form exp(ikr)
carry electronic current. This case is not of primary interest for the discussion to follow.

(2) E,/E; <1 at low coverages, indicating that electrons are mainly localized but that
tunneling can occur to a limited extent. Conductivity occurs by quantum mechanical hops, not by
continuous Bloch waves. The situation is analogous to tunneling conductivity in alkali-ammonia
solutions, 14
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(3) Near E:/Ei =1 a critical transition from metallic to tunneling conductivity should
occur. The critical spacing ratio is approximately

a., =+ 10 (51)

[

(4) In the tunneling range the dashed line is a fair approximation to the computed solid
line. The equation for the dashed line, assuming p = p*, is

E
Ef = 100 a4 = 0.289 «4 62 (52)

1

showing that E, is proportional to the coverage squared. In the very low coverage range the
dashed line departs from the solid line. It is surprising that all data to be described in Sections
F. and G. seem to fit the dashed line more accurately. Reasons for this effect are not clear. The
dashed line is extremely simple to manipulate algebraically and will be used in the analysis to
follow.

This completes the calculation of the tunneling energy and its dependence on coverage,
dielectric constant, and effective mass. Admittedly, many simplifications are used in the deri-
vation. Probably the most serious omission is the neglect of many particle interactions. Never-
theless, this simplified treatment of only two body interactions is, in fact, fairly accurate as
judged by experimental data.

3. Phonon Energy

Energy introduced into a conductor by an electric field will eventually be dissipated
either by photons or phonons. Photon energy transitions are proportional to the cube of the tran-
sition energy, so that they are generally rare compared to low-energy phonon transitions.

Phonon energies of an isotropic solid follow the Debye distribution to a first approxi-

mation with a characteristic bulk phonon energy E; and Debye temperature 0, related by

Ep = kfp (53)

where k is Boltzmann’s constant. But an adsorbed surface atom has a mean phonon energy E,
different from that of the bulk value. This energy is given by one vibrational quantum and is
related to the vibrational frequency v, by
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A simple procedure for calculating v_ for any adsorbed species on a surface has been given in
detail by the author?? and is summarized below.

Consider a cesium ion located on a sapphire surface. Sapphire is crystalline Al,O, con-
sisting of O™ jons placed on a hexagonal close-spaced lattice with Al*** jons placed in the
interstices. A cesium ion will most probably be nestled on top of three oxygen ions arranged on
vertices of an equilateral triangle as shown in Fig. 10. The cesium will undergo vibrations

Fig. 10. Pyramidal molecule consisting of one cesium ion nestled on top
of three oxygen ions. Phonons are transferred via the vertical
molecular vibrations.

perpendicular to the surface with frequency Vp which will now be calculated from a harmonic
oscillator model. The equation?? is

2
WS S e U (55)
P 2n m Rcos B

where ¢_ is the heat of adsorption, m is the reduced mass of the pyramidal molecule, R is the
sum of ionic radii of cesium and oxygen, B is half the apex angle, and s is the interoxygen spacing.

23



Typical values of these parameters are

¢, = 0.9eV

3l
1l
n
15}
o
|
W
v

cos B=(1 - S2/3R2)” = 0.88

s = 2.50 &

which gives
v, = 0.97 x1012 sec™!

and (56)
EP = 0.0040 eV

These results are insensitive to ¢_ and mbecause of the square root dependence. In the dis-

cussion to follow, Eq. (56) will be compared with experimental data in the absence of other in-
formation regarding the surface structure of alumina polycrystalline ceramics or glass.

4. Parametric Analysis
By combining Egs. (44) and (46) the conductivity becomes a unique function of 6:

e4a2exp(—a) 3 3
=& ¢ =P 2. 2 7
g5 12hK2a§Ep (l v a2> (57a)

In particular, by using the straight-line approximation of Eq. (52) and the phonon energy of
Eq. (66), one gets

g = bg?
- (57b)

b = 0.0094x2 mhos/square
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which is plotted on a log-log scale in Fig. 11. The dielectric constant « is a running parameter
allowed to vary from 1 to 100.
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Fig. 11. Parametric theoretical plot of tunneling conductivity versus
coverage for various values of dielectric constant. Shaded
area indicates region where data have been obtained.

The figure consists of a family of straight lines, one line for each « value. The region to
the upper left bounded by a dashed line is not applicable since E > E; and metallic conductivity
occurs there. The region to the right bounded by a vertical dashed line is not applicable since the
coverage is too high, 8 > 0.1, and cooperative interadsorbate effects tend to dominate. In partic-
ular, the heat of adsorption is expected to be constant only for § < 0.1. Data have been taken in
the shaded region of the figure.

More information regarding the range of meaningful x values can be obtained from Table I.

Small « values, k < 3, are questionable since the theory of nodal wave functions was based on
dielectric constants significantly greater than unity. Large « values (x > 11) are questionable
since kT > E;, and the states are most probably thermally ionized into the conduction band

room _ .
The theory seems to apply best to intermediate « values in the range 3 < « < 11.

Another restriction is that of small overlap: The mean lateral radius T should be less
than one-half the mean lattice spacing L. With T defined by
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TABLE I |
THEORETICALLY CALCULATED PROPERTIES IMPORTANT TO SURFACE TUNNELING

K Ei(eV) r(Z) Ls (Z) 6{ gD/f, (mho) b
DIELECTRIC [IONIZATION|[MEAN LATERAL|SMALLEST | LARGEST |LARGEST TUNNELING =g 9'2
CONSTANT ENERGY RADIUS SPACING [COVERAGE CONDUCTIVITY o

1 3.4 1.6 14 0.10 1.0 x 1074 0.0094
3 0.38 4.7 14 0.10 8.0 x 1074 0.085
5 0.14 7.8 17 0.074 13 x 1074 0.23
7 0.069 11 23 0.038 6.7 x 1074 0.46
9 0.042 14 30 0.023 4,0 x 1074 0.76

11 0.028 17 37 0.015 2.7 x 1074 1.14

13 0.020 20 44 0.009 1.9x 1074 1.59

100 0.0003 156 0.033 x 1074 94

il
1l

Jor [x2ey? g dr/f vy dr, (58)

calculation shows that

r

(15/16) 7k a* (59)

for the 2p ground state. Values of T, assuming p* = u, and the smallest meaningful internuclear
spacing L _ from Fig. 11 and Eqs. (48, 49 and 51) are both shown in Table [; the small tunneling
overlap condition is indeed observed for all « considered.

The largest allowable coverage in the valid « range varies from 0.01 < § < 0.1 showing
that the surface donors are indeed dilute as implicitly assumed in the derivation of wave functions
of individual adatoms.

Finally, Table I shows that in the allowed « range, tunneling conductivity should not ex-
ceed ~1073 mhos/square. If surface conductivity is observed greater than this theoretical value,
then one can infer the conduction mechanism to be metallic and rather insensitive to the concen-
tration of surface donors. The transition from tunneling to metallic conductivity has been observed
in alkali-ammonia solutions.'4 For surface conductivity, bulk condensation occurs before the

transition has a chance to appear.]'2

In summary, the theoretical analysis of this section shows that tunneling conductivity can
be explicitly calculated without any reference to experimental data. Tunneling conductivity occurs
in dilute surface layers, 6 < 0.1, and it varies approximately as 2.

In dynamic equilibrium the coverage ¢ is a function of surface and metallic vapor bath
temperatures. This functional dependence is derived in the following section.

E. EQUATION OF STATE

To calculate the coverage 6 of surface donors consider a surface at temperature T im-
mersed in a metallic vapor bath at temperature T’ Provided T > T’, dynamic equilibrium is
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established and agglomeration of the adsorbate donor atoms into crystallites is thermodynamically
unstable. There will exist a two-dimensional adsorbate donor gas which is constantly agitated due
to rearrangement, adsorption, and desorption.

The equation of state relating ¢ to T and T’ is extremely simple at low coverages,
6 < 0.1, because the heat of adsorption is then largely independent?4 of coverage and tempera-
ture. The equation of state constructed from a rate balance is2?

As/k o /kT _ . . . b "/kT (60)

wupo'@e

where o = surface statistical weight
p = surface vibrational frequency
o = surface monolayer density
0 = surface coverage
surface configurational entropy
= surface adsorption heat
= surface temperature
liquid statistical weight
= liquid vibrational frequency
liquid monolayer density
= liquid vaporization heat
liquid temperature
k = Boltzmann's constant

A

>
. '—]:;1e~ [
I il it

~

-6 Q T €
[

I

This equation is based on the model of a mobile two-dimensional layer with one degree of vibra-
tional freedom perpendicular to the surface. The surface statistical weight « is considered only
for the lowest electronic state of the donor atom. Departures either from the model or in the re-
striction to ground state statistical weights will be taken up, at least approximately, in the con-
figurational entropy term As/k. Neither As/k nor ¢_ can be predicted from more fundamental
ideas at the present time. They will be inferred from experimental data later on. Close estimates
of the other parameters22 can be made, however, and are listed below for cesium on insulators.

w =2

w’'=1

z/p=0.97 x 1012 gec™!
v = 1.26 x 1012 sec”!
o =4.8x 1014 cm™2
0" =4.16 x 1014 cm™2
¢ =0747 eV

On the insulator surface, cesium donor electron spins are probably uncorrelated in the dilute
case; the electronic statistical weight for the ground state is then w = 2. On the cesium liquid,
the spins are always paired so that o = 1. Using these values Eq. (60) becomes

6 = 0.545 gAs/k B/kT ,eqsa-kT (61)

By combining this equation of state with the general conductivity relation [Eq. (57a)] the
following general theoretical predictions result:
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1. Since log ¢ is a single-valued function of 1/T and 1/T "’ and since g5 is a
single-valued function of 6, it follows that log g_ should be a single-valued
function of 1/T and 1/T". This dependence can be visualized most easily
by imagining a plot constructed with 1000/T as ordinate and 1000/T * as
abscissa. It follows that on this plot lines of constant g_ would never
intersect.

2. The slope of this plot, being defined by

8 (1000/T)

1 -—
SI0P€ = 1000/ T )

constant g_

is theoretically calculated to be ¢ ’/¢, and constant, provided 4 is suf-
ficiently low so that ¢ is coverage-and temperature-independent.

3. The horizontal spacing of g_ lines differing by constant factors, say factors
of 10, will generally vary.

[n summary, general considerations indicate a family of nonintersecting, parallel, and non-
uniformly spaced lines of constant conductivity on a 1000/T, 1000/T * plot.

In addition to these general predictions, more specific predictions can be drawn if the
conductivity can be written in the power law form

gy = boY (62)

where y is any power of §. Then the lines of constant g will be equally spaced.

For the particular case when the straight-line approximation of Eq. (57b) is assumed,
y = 2 and lines of constant g_ such as g_ = 1074, 1075, 1076, 1077, etc., would be equally
spaced 2 x 0.745/5.05 = 0.295 units apart on the horizontal axis 1000/T " The conductivity
can then be written in closed form as

g = b6? = 0297 be 2D K 2B /KT 2, /KT (63)

To compare theory with experimental data it is convenient to use the Arrhenius form

B C
Log,, gD=A—F+ T (64)

where
=-0.52 + Log,, b-0.85 As/k
B =2x 5050 x ¢ = 7550 (65)
C=2x5050x ¢, = 10, 100 ¢,

The theoretical constant B is rigidly fixed, while the constants A and C contain the
configurational entropy and heat of desorption, respectively, which will be inferred by comparison
with data taken under *‘clean’’ experimental conditions.
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If the effect of contaminants would be merely to alter y, then an Arrhenius equation
would still occur, but with A, B, and C values different from Eq. (65). The slopes B/C of the
g, line family would, however, be unaltered and the line spacings would still be uniform.

Analysis of the Arrhenius equations provides a very sensitive probe to determine the
extent of adsorbate and contaminant gas interaction. Data reported below will serve to display
various predicted effects occurring under *‘clean’” and '‘unclean’’ conditions.

F. ELECTRICAL CONDUCTIVITY CAUSED BY ADSORBED CESIUM ON INSULATOR SURFACES

Electrical conductivity caused by adsorbed cesium on various insulator surfaces has been
measured extensively*. The insulators used were high alumina **Diamonite’ ceramic, high alumina

"“Frenchrown’’ ceramic, and pure crystalline sapphire; the surface temperatures varied in the range

300K < T < 600°K; the cesium vapor bath temperatures varied in the range 300°K < T “ < 500°K;
and data were taken both with and without a continuously purifying cesium still and getter ion
pump. It was found that:

1. The conductivity per square, g_, is surprisingly reproducible and identical
for all high alumina substrates, provided either vapor contaminants are con-
tinuously gettered or an isolated system is in early stages of life, and fol-
lows a semiempirical law over many orders of magnitude

Log g 85=A - Ti + LT (mho) (66)

where A = -5.4, B = 7520, and C = 8340.

2. For isolated systems in later stages of life where unknown contaminant
gases accumulated, the conductivity is again reproducible but higher with
entirely different values of A = —~4.5, B = 2400, and C = 2700.

These data may be applied to choosing insulators for thermionic energy converters and
associated test devices.

G. COMPARISON OF THEORY WiTH EXPERIMENT

Experimental data of electrical conductivity caused by adsorbed cesium on insulators has
already accumulated (see Section F. and References 1-3). It is necessary first to present the
data in a compact form so that it can be neatly compared with theory.

The conductivity of cesium on all *clean’ alumina (including sapphire) systems follows
the theoretical Arrhenius relationship [Eq. (64)] with A, B, and C values given by2

- 5.4
7520 **clean’’ alumina (67)
8340

A
B
C

* This work was reported in its entirety in the Proceedings of the Thermionic Specialist Conference, Cleveland,
Ohio, October 1964, and is summarized here.
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The data are shown in Fig. 12. **Clean”’ conditions are defined as continuously gettered sys-
tems at low temperatures or pinched-off systems in initial stages of life.
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Fig. 12. Master plot of constant conductivity versus reciprocal bath and surface
temperatures, taken under ‘“clean’’ conditions. Data refer to Diamonite
ceramic, Frenchtown ceramic, and sapphire. Lines follow semiempirical
Arrhenius formula.

Blackford3 reported conductivity data for cesium on *‘clean’” Pyrex glass surfaces. His

data yielded

A=-6.6
B = 7520 *“clean’’ Pyrex (68)
C = 8340

as shown in Fig. 13.

Finally, for “‘unclean’ alumina systems the Arrhenius parameters representing the data

became?

A=-45
B = 2400 **unclean’’ alumina (69)
C = 2700

The data are shown in Fig. 14. **Unclean’ conditions are defined as pinched off and nongettered
systems where residual gases have a chance to accumulate.
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Fig. 13. Master plot of Blackford’s cesium on Pyrex glass data. The
semiempirical line formula is similar to that of cesium on
ceramic under ‘‘clean’ conditions.
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Fig. 14. Master plot of constant conductivity versus reciprocal bath and surface
temperatures, taken under ““unclean’’ conditions.
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The transition between *'clean’ and “‘unclean’’ alumina systems was followed after a

getter ion pump was pinched off. There is a gradual transition such that A, B, and C values
slowly change from Eq. (67) to Eq. (69). After about one week of constant testing a final equilib-
rium is attained which allowed the determination of Eq. (69).

Let us now interpret all the data in terms of the theoretical predictions set forth in
Section I-E.

The fact that the data always follow Arrhenius conductivity relationships indicates that:

(a) Conductivity follows a power law of coverage given by
gD = b@y (70)

(b) Line slopes are identical.

(c) The observed conductivity is not a sum of partial conductivities
because the Arrhenius relationship is inconsistent with a sum
of effects.

(d) The conduction mechanisms on glass and crystalline sapphire
are similar, confirming the prediction of surface electron tunnel-
ing proposed in Section I-D.

The fact that for clean systems the theoretical B value (7520) and the experimental B
values exactly agree shows that the conductivity is proportional to the coverage squared as
theoretically anticipated.

For unclean systems the experimental B value is 1/3 of the theoretical value; this in-
dicates that the contaminant causes the conductivity to vary as the coverage to the two-thirds
power. The contaminant gas, most probably hydrogen,? is deduced to aid the tunneling between
cesium atoms and to increase the conductivity. Possibly the hydrogen acts as a bridge for the
cesium-cesium tunneling process.

For clean systems, comparison between theoretical and experimental C values shows that
¢, =0.83eV (71)

which is 0.08 eV higher than the vaporization heat?? of bulk cesium (¢ "= 0.75 eV). An independent
check of ¢, was made in the following simple experiment.* A mass of fine alumina powder was
painted on one electrode in an evacuated glass tube containing liquid cesium droplets. At constant
temperature it was discovered that the droplets spontaneously became smaller, and the cesium-
gradually appeared in the alumina powder as judged from its color progression: white to blue to
black. As soon as the powder was warmed to about 100°C, however, the cesium departed the
powder and became redeposited in liquid droplets on the glass walls. The observed 100°C tem-
perature difference required to reversibly transport cesium from the powder to the droplets in-
dicates that ¢ _ and ¢ * are fairly close. The observed fact that at constant temperature, cesium
prefers the adsorbed state to the cesium droplet state indicates that ¢, is slightly greater than
¢ . Thus, this experiment helps to verify the calculated ¢, value deduced above. For both clean
and unclean systems the ratio B/C is constant, indicating that ¢_ is constant and unperturbed
by contaminants.

*

K. G. Herngvist, RCA Laboratories, unpublished data.
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For clean alumina the theoretical A value can be calculated provided «, p*/pu, and
As/k are known. Inserting reasonable values of x =9 and p*/u = 1 into Eq. (65) yields
A = - 0.64 - 0.87 As/k. By comparing this with the experimental A value of - 5.4, the con-
figurational entropy change is calculated to be

As/k = 5.5 (72)
Similarly,- assuming « = 5 and p*/p = 1 for clean Pyrex one obtains
As/k = 6.2 (73)

As/k values are dependent on the adsorption model as well as the parameters « and p*/u. Their
large magnitudes indicate?? a reduction in translational freedom, possibly arising from an order-
ing due to dipole-dipole repulsions. This interpretation is in agreement with the long-range order-
ing observed in many low-eneigy electron diffraction(LEED)experiments. It also follows that if a
fixed, long-range order is assumed, then As/k should be fixed, and the absolute value of A should
increase with decreased dielectric constant [see Eqs. (65) and (57b)]. This theoretically predicted
trend has indeed been observed experimentally: for alumina, « ~9 and A = - 5.4; and for Pyrex,

k=95 and A = - 6.6.

H. CONCLUSIONS

Starting from fundamental quantum mechanical concepts, it has been possible to theoret-
ically derive wave functions, donor ionization energies, tunneling energies, conductivity relation-
ships, and equations of state, all in excellent agreement with the extensive experimental data
taken to date.

Some of the highlights of this effort are:

1. The ground state wave function of a cesium atom on a dielectric surface
consists of one lobe of a 2p hydrogenic wave function penetrating deep
into the dielectric.

General rules for selecting surface wave functions of all excited states

and arbitrary surface asymmetry have been derived.

3. Cesium-cesium interactions are explicitly calculated using Kopineck’s
resonance integral between neighboring wave functions.

4. Conductivity proceeds via cesium-cesium electron tunneling and the
conductivity relationship is derived in terms of Kopineck’s integral and
the surface phonon transitions which supply the conductivity loss
mechanism.

5. Phonon energies are explicitly calculated from the vibrational motion
of surface atoms.

6. The conductivity varies as the cesium coverage squared, to a first
approximation.

7. An equation of state is derived showing the linear dependence of
coverage and arrival rate for the low coverage system of interest.

The conductivity is then predicted to be proportional to the cesium
pressure squared. This prediction has been accurately verified ex-
perimentally.

9]
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10.

11.

By comparing other aspects of theory and experimental data, the heat and
entropy change of adsorption have been unambiguously calculated. For all
clean alumina and glass substrates ¢_ = 0.85 eV and 5.5 < As/k < 6.2.

The large As/k values indicate that there is long-range order either caused
by dipole-dipole repulsions of surface cesium atoms or by the extended p or
d wave functions characteristic of high dielectric materials. A similar long-
range order has been observed in LEED studies.

For surfaces probably contaminated with hydrogen, conductivity increases
above the nonhydrogenated case; the hydrogen probably forms conductivity
bridges between nearly cesium atoms. The heat of adsorption is unchanged
from ¢, = 0.85 eV, showing that the contaminant affects the conductivity
but not the binding energy of cesium.

The Arrhenius form of experimental data is convenient for calculating cesium
conductivity in various thermionic energy converters and related test apparatus.
Sophisticated means have been developed for analyzing the Arrhenius co-
efficients with and without contaminants. This represents an important tool
in understanding the complex system of two adsorbates present on one sub-
strate.
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